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Source Task Prompt Training : Monolingual task corpora consists of same tasks as the code-switching target tasks (like POS, SA). Source task prompts are
obtained through prompt-tuning on monolingual source task corpora.

Source Language Prompt Training : Source language prompts are trained on wikipedia data for each source language to capture language-specific
knowledge. Inspired by the discriminative pre-training of language models, we used a distilled mBERT as a generator to generate tokens from masked input.
The frozen mBERT discriminator with soft prompt learns to distinguish between fake and real tokens.

Code-Switched Target Prompt Training : Learn task and language-specific target prompts to capture task and language-specific information of the
code-switched task. Separate attention modules are trained for each target prompt to learn the contribution of task and language prompts. Attention
modules are then used to compose an instance based prompt using source and target prompts.

Target Prompt Initialization : Target language prompt is initialized using a prompt trained on language identification task for the code-switched language
pair. This is done to add inductive bias for the downstream task. Target task prompt is initialized fromm random words from the vocabulary.

Results
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e For cross-lingual transfer, PRO-CS is significantly more data efficient compared to both fine-tuning and  Cross-Lingual transfer (En-Hi — En-Bn) POS
prompt-tuning approaches. Experimented with total training instances ranging from 16 to 512.



